<u>CONSTRUCTION OPERATIONS AND METHODS</u> **DEWATERING & PUMPING**

 \rightarrow Dewatering – Is the process of removing water from an excavation. The result is lowering of the ground water level, which involves pumping the water away from a given location.

**Note: changing the water table may cause settlement in other area, so be aware.

 \rightarrow The question on the PE Exam for this will probably be related to cost estimating, quality take off, or just a knowledge questions dealing with this topic. They will not ask you to design or space out the wells.

 \rightarrow The selection of the dewatering method used depends mostly on the soil permeability, which is the ease of water flow through a soil. The soil permeability is a function of grain size.

 \rightarrow The appropriate dewatering methods are;

Effective Grain Size (D ₁₀)		Dewater	Dewatering Method	
> .1mm (no. 150 sieve)		Sumps of	Sumps or Well points	
.1mm004 mm		Vacı	Vacuum Wells	
.004mm0017 mm		Electro osmosis		
The problem		<u>The solution</u>		
Ground Level		Gr <u>ound Level</u>		
Normal water level		Normal water level	Riser pipe	
IEADNI	Water in excavation site	New water level	Sump pump	
LCAKIN Civil Engineering				

WELL POINT METHOD

- → In practice usually max effective dewatering depth is about 20 ft below ground surface.
- \rightarrow Well points typical spaced 2-10 ft apart around the excavation
- \rightarrow Yield flow is between 3 to 30 gal/min per well point

VACUUM WELLS

Key Facts:

- → This type is just wellpoints that are sealed at the surface at the well casing with bentonite or clay in order from the pump to get better suction.
- → In fine-grained soils, a sand filter should be used around the well point and the riser pipe

ELECTRO OSMOSIS WELLS

Key Facts:

 \rightarrow This method is the process of accelerating the flow of water through a soil by using direct current.

 \rightarrow Usually space wells at intervals of about 35 ft – then drive grounding rods between the wells. Attach a negative terminal of DC voltage at each well and the positive terminal on each grounding rod.

 \rightarrow A voltage of 1.5 to 4 Volts per foot between the well and ground rod is then applied. This will increase the flow of water to the well.

→The applied voltage should not exceed 12 V/ft. The typical current requirements are 15 - 30 Amps per well. Which is a power demand of .5 - 2.5KW per well

 \rightarrow Studies have proven this method to be extremely effective for increasing water flow through fine soil(Clay).

